Characterization of the Caulobacter crescentus holdfast polysaccharide biosynthesis pathway reveals significant redundancy in the initiating glycosyltransferase and polymerase steps.

نویسندگان

  • Evelyn Toh
  • Harry D Kurtz
  • Yves V Brun
چکیده

Caulobacter crescentus cells adhere to surfaces by using an extremely strong polar adhesin called the holdfast. The polysaccharide component of the holdfast is comprised in part of oligomers of N-acetylglucosamine. The genes involved in the export of the holdfast polysaccharide and the anchoring of the holdfast to the cell were previously discovered. In this study, we identified a cluster of polysaccharide biosynthesis genes (hfsEFGH) directly adjacent to the holdfast polysaccharide export genes. Sequence analysis indicated that these genes are involved in the biosynthesis of the minimum repeat unit of the holdfast polysaccharide. HfsE is predicted to be a UDP-sugar lipid-carrier transferase, the glycosyltransferase that catalyzes the first step in polysaccharide biosynthesis. HfsF is predicted to be a flippase, HfsG is a glycosyltransferase, and HfsH is similar to a polysaccharide (chitin) deacetylase. In-frame hfsG and hfsH deletion mutants resulted in severe deficiencies both in surface adhesion and in binding to the holdfast-specific lectin wheat germ agglutinin. In contrast, hfsE and hfsF mutants exhibited nearly wild-type levels of adhesion and holdfast synthesis. We identified three paralogs to hfsE, two of which are redundant to hfsE for holdfast synthesis. We also identified a redundant paralog to the hfsC gene, encoding the putative polysaccharide polymerase, and present evidence that the hfsE and hfsC paralogs, together with the hfs genes, are absolutely required for proper holdfast synthesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of the Caulobacter crescentus Holdfast Polysaccharide 1 Biosynthesis Pathway

24 Caulobacter crescentus cells adhere to surfaces using an extremely strong polar 25 adhesin called the holdfast. The polysaccharide component of the holdfast is 26 comprised in part of oligomers of N-acetylglucosamine. The genes involved in the 27 export of the holdfast polysaccharide and anchoring of the holdfast to the cell were 28 previously discovered. In this study, we identify a cluster...

متن کامل

Identification of genes required for synthesis of the adhesive holdfast in Caulobacter crescentus.

Adhesion to both abiotic and biotic surfaces by the gram-negative prothescate bacterium Caulobacter crescentus is mediated by a polar organelle called the "holdfast," which enables the bacterium to form stable monolayer biofilms. The holdfast, a complex polysaccharide composed in part of N-acetylglucosamine, localizes to the tip of the stalk (a thin cylindrical extension of the cell wall and me...

متن کامل

Physiochemical properties of Caulobacter crescentus holdfast: a localized bacterial adhesive.

To colonize surfaces, the bacterium Caulobacter crescentus employs a polar polysaccharide, the holdfast, located at the end of a thin, long stalk protruding from the cell body. Unlike many other bacteria which adhere through an extended extracellular polymeric network, the holdfast footprint area is tens of thousands times smaller than that of the total bacterium cross-sectional surface, making...

متن کامل

Functional characterization of UDP-glucose:undecaprenyl-phosphate glucose-1-phosphate transferases of Escherichia coli and Caulobacter crescentus.

Escherichia coli K-12 WcaJ and the Caulobacter crescentus HfsE, PssY, and PssZ enzymes are predicted to initiate the synthesis of colanic acid (CA) capsule and holdfast polysaccharide, respectively. These proteins belong to a prokaryotic family of membrane enzymes that catalyze the formation of a phosphoanhydride bond joining a hexose-1-phosphate with undecaprenyl phosphate (Und-P). In this stu...

متن کامل

A Cell Cycle and Nutritional Checkpoint Controlling Bacterial Surface Adhesion

In natural environments, bacteria often adhere to surfaces where they form complex multicellular communities. Surface adherence is determined by the biochemical composition of the cell envelope. We describe a novel regulatory mechanism by which the bacterium, Caulobacter crescentus, integrates cell cycle and nutritional signals to control development of an adhesive envelope structure known as t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 190 21  شماره 

صفحات  -

تاریخ انتشار 2008